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Abstract

We study tiling and spectral sets in vector spaces over prime fields. The classical
Fuglede conjecture in locally compact abelian groups says that a set is spectral if and
only if it tiles by translation. This conjecture was disproved by T. Tao in Euclidean
spaces of dimensions 5 and higher, using constructions over prime fields (in vector
spaces over finite fields of prime order) and lifting them to the Euclidean setting. Over
prime fields, when the dimension of the vector space is less than or equal to 2 it has
recently been proven that the Fuglede conjecture holds (see [6]). In this paper we
study this question in higher dimensions over prime fields and provide some results
and counterexamples. In particular we prove the existence of spectral sets which do
not tile in Z5

p
for all odd primes p and Z4

p
for all odd primes p such that p ≡ 3 mod 4.

Although counterexamples in low dimensional groups over cyclic rings Zn were pre-
viously known they were usually for non prime n or a small, sporadic set of primes
p rather than general constructions. This paper is a result of a Research Experience
for Undergraduates program ran at the University of Rochester during the summer of
2015 by A. Iosevich, J. Pakianathan and G. Petridis.
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1 Introduction

The purpose of this paper is to study the relationships between tiling properties of sets
and the existence of orthogonal exponential bases for functions on these sets in the context
of vector spaces over finite fields. As both tiling properties and spectral properties of
sets depend only on the underlying abelian group of these vector spaces, it is enough to
understand these relationships over prime fields Zp = Fp. This is because for any prime p,
the finite field Fps is additively isomorphic to Z

s
p so that Fd

ps
∼= Z

ds
p as abelian groups. Due

to this, in the remainder of this paper, we exclusively consider these questions in vector
spaces over prime fields i.e., in Z

d
p, where p is a prime.

The study of the relationship between exponential bases and tiling has its roots in
the celebrated Fuglede Conjecture in R

d, which says that if E ⊂ R
d of positive Lebesgue

measure, then L2(E) possesses an orthogonal basis of exponentials if and only if E tiles
R
d by translation. Fuglede proved this conjecture in the celebrated 1974 paper ([2]) in

the case when either the tiling set or the spectrum is a lattice. A variety of results were
proved establishing connections between tiling and orthogonal exponential bases. See, for
example, [14], [8], [13], [9] and [10]. In 2001, Izabella Laba proved the Fuglede conjecture
for unions of two intervals in the plane ([12]). In 2003, Iosevich, Katz and Tao ([5]) proved
that the Fuglede conjecture holds for convex planar domains.

A cataclysmic event in the history of this problem took place in 2004 when Terry Tao
([16]) disproved the Fuglede Conjecture by exhibiting a spectral set in R

5 which does not
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tile. The first step in his argument is the construction of a spectral subset of Z5
3 of size 6. It

is easy to see that this set does not tile Z
5
3 because 6 does not divide 35. As a by-product,

this shows that spectral sets in Z
d
p do not necessarily tile at least in the cases p = 3, d ≥ 5

and p = 2, d ≥ 11 considered by Tao. See [11], where Kolountzakis and Matolcsi also
disprove the reverse implication of the Fuglede Conjecture. In [4] and [3], the dimension
of counter-examples was further reduced. In fact, Farkas, Matolcsi and Mora show in [3]
that the Fuglede conjecture fails in 3 dimensions by proving the existence of a tiling set
which is not spectral in Z

3
n (where n is a suitably large multiple of 24) by first constructing

a tiling set without a universal spectrum in Z
3
24. The general feeling in the field was that

sooner or later the counter-examples of both implication will cover all dimensions. However,
Iosevich, Mayeli and Pakianathan proved in [6] that the Fuglede Conjecture holds in two-
dimensional vector spaces over prime fields. This result is reproved in this paper in the
course of surveying results as well as the implication that over prime fields, in dimension
3, tiling sets are always spectral. This is in contrast to the aforementioned examples which
show that the implication tiling → spectral fails in Z

3
n (where n is some multiple of 24)

and hence in R
3.

In this paper we study this question in higher dimensions and provide some results and
counterexamples. In particular we prove the existence of spectral sets which do not tile
in Z

5
p for all odd primes p and Z

4
p for all odd primes p such that p ≡ 3 mod 4. Although

counterexamples in low dimensional groups over cyclic rings Zn were previously known
they were usually for non prime n or a small, sporadic set of primes p rather than general
constructions.

This paper is structured as follows. After summarizing some basic facts about tiling
sets and spectral sets in the first two sections, we prove various results regarding them and
construct some interesting counterexamples in prime fields. We develop further machinery
such as that of Davey matrices which allow human-readable verifications of the Fuglede
conjecture in Z

3
2 and Z

3
3 which is done in the last section.

We also verify certain conditions where the Fuglede conjecture holds in general:

Theorem 1.1. Let E ⊆ Z
d
p, p a prime, and let |E| denote the number of elements of E.

(a) If E is a tiling set then |E| = pr, 0 ≤ r ≤ d.

(b) If E is a spectral set then |E| = 1, pd or |E| = kp for some 1 ≤ k ≤ pd−2.

(c) If E is a spectral set in Z
d
2 then |E| = 1, 2 or a multiple of 4.

(d) A set E tiles with a subspace tiling partner V if and only if E is spectral with spectrum
V ⊥. This happens if and only if E is a full graph set.

(e) If |E| = p, pd−1 then E tiles if and only if E is spectral. Furthermore E has a subspace
tiling partner and hence is a graph set when this occurs.
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(f) In dimensions d ≤ 2, E tiles if and only if E is spectral. Furthermore E is a graph
set when this occurs. (First obtained in [6]).

(g) In dimension d = 3, E tiles → E spectral. Furthermore E is a graph set when this
occurs.

(h) If E is any spectral set then E either tiles or k-tiles where k = |E|
p

with a hyperplane
partner.

(i) If E is a spectral set of size mp in Z
d
p then there exists a function f : E → Zm

such that Graph(f) = {(e, f(e))|e ∈ E} ⊆ Z
d
p × Zm tiles Z

d
p × Zm. Furthermore

the projection (forgetting the last coordinate) from Z
d
p × Zm → Z

d
p takes Graph(f)

bijectively to E. Thus every spectral set is the bijective image of a tiling set under a
projection.

We next construct low-dimensional examples of spectral sets which do not tile for all
odd primes. In general constructing counter-examples over prime fields is more constrained
than over cyclic groups of non-prime order. For example though the implication tiling →
spectral is true in Z

3
p for any prime p, it is not true in some Z

3
n when n is not prime. See

[3] for a construction of this type.

Theorem 1.2. Let p be an odd prime then:

(a) There are examples of spectral sets of size 2p in Z
5
p which do not tile for every odd

prime p.

(b) When p ≡ 3 mod 4 there are examples of sets of size 2p in Z
4
p which do not tile.

Thus the implication E spectral → E tiles is always false in 5 or more dimensions over Zp,
p any odd prime and is always true in 2 or less dimensions for all primes. For p ≡ 3 mod 4
it is false in dimension 4 also.

Theorem 1.1 and 1.2 essentially settle the status of Fuglede’s conjecture over prime
cyclic rings in all dimensions except three. In 3 dimensions, we provide a readable proof
that Fuglede’s conjecture holds over Z

3
2 and Z

3
3 in Theorem 9.2 but it remains open for

higher primes.
The existence of nonprime counterexamples is not indicative in this regard as the im-

plication tiling → spectral holds in Z
3
p when p is prime but not in general when Z

3
n is

not prime and so the restriction to prime cyclic rings is important and known to make a
difference.
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2 Fourier transform and cones

Let f : Zd
n → C be a complex-valued function, the Fourier transform f̂ of f is defined via

f̂(m) =
1

nd

∑

x∈Zd
n

f(x)χ(−x ·m)

where x ·m = x1m1 + · · · + xdmd is the “dot product” and χ(u) = e
2πiu
n is the canonical

additive character of Zn.
If 1 denotes the constant function with value 1 then one easily computes that 1̂(m) =

δ(m) where δ is the Kronecker delta function.
A crucial fact about the Fourier transform over prime fields Zp when p a prime is the

following equidistribution result which can be found in [6] for example:

Lemma 2.1. Let p be a prime and E ⊆ Z
d
p and m ∈ Zp\{0}. The following are equivalent:

(1) Ê(m) = 0.

(2) E equidistributes on the p parallel hyperplanes Hm,t = {x|x·m = t}, t = 0, 1, . . . , p−1.

(3) Ê(rm) = 0 for all r ∈ Zp − {0}.

Definition 2.2. A punctured line in Z
d
p is a line through the origin with the origin removed.

A cone in Z
d
p is a set which is a union of punctured lines. Equivalently C is a cone if and

only if for every c ∈ C and r ∈ Zp − {0} we have rc ∈ C.

Some important examples of cones that we will use are the following:
For any E ⊆ Z

d
p we define Z(Ê) = {m|Ê(m) = 0} the zero cone of Ê and Spt(Ê) =

Z
d
p − Z(Ê)− {0} the support cone of Ê. These are cones because of Lemma 2.1.
We also define the direction set of E, Dir(E) = {e1 − e2|e1 6= e2 ∈ E} and direction

cone of E, DirC(E) = {r(e1 − e2)|e1 6= e2 ∈ E, r ∈ Zp − {0}}. When working over Zn, n
not a prime, we will still use the same notation for these sets though some of them will no
longer be cones.

Another cone of importance for us later is the cone of balanced vectors of dimension
mp over Zp. A vector is balanced if every element of the field Zp occurs equally often as
a coordinate of the vector. Clearly they exist only in dimensions which are multiples of p
and the set Bm of balanced mp-dimensional vectors is easily seen to be a cone. In fact as
adding any multiple of the all one vector to a balanced vector maintains balance, it is easy
to see the set Bm is a union of 2-dimensional subspaces containing the line L through the
all one vector minus the line L itself.
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3 Tilings

Let E ⊆ Z
d
n. Then we say that E tiles if it has a tiling partner A such that the translates

{E + a|a ∈ A} partition Z
d
n. Note that in particular this implies |E||A| = nd and in

particular |E| is a divisor of nd. When n = p is prime this forces |E| = pr for some
0 ≤ r ≤ d. The following are equivalent formulations of tiling sets:

Theorem 3.1. Let E,A be subsets of Zd
n with |E||A| = nd. The following are equivalent:

(a) Every x ∈ Z
d
n can be written uniquely in the form e+ a, e ∈ E, a ∈ A.

(b) Z
d
n = ∪a∈A(E + a) where the union is disjoint.

(c) E⋆A = 1 where ⋆ is the discrete convolution operator, and we now use E (respectively
A) to stand for the characteristic function of the corresponding set. Here 1 is the
constant function with value one.

(d) Ê(m)Â(m) = 0 for all nonzero m.

(e) Spt(Ê) ∩ Spt(Â) = ∅.

(f) Z(Ê) ∪ Z(Â) = Z
d
n − {0}.

(g) Dir(E) ∩Dir(A) = ∅.

If n = p is a prime, then these are also equivalent to:

(h) DirC(E) ∩DirC(A) = ∅.

Furthermore if s1, s2 ∈ Zp − {0}, m1,m2 ∈ Z
d
p then (E,A) tiles if and only if (s1E +

m1, s2A+m2) tiles. Thus we can and often will assume ~0 is in E ∩A and indeed when we
do this, we have to have E ∩A = {~0}.

Proof. Condition (a) is immediately seen to be equivalent to the definition of a tiling set E
with tiling partner A. The definition we have taken as our initial one is (b). (c) is seen to be
equivalent immediately as E⋆A(x) =

∑
y E(y)A(x−y) counts the number of ways to write

x as a sum of something in E with something in A. Taking the Fourier transform of the
equation E ⋆A = 1 yields the equation ÊÂ = 1

nd δ where δ is the Kronecker delta function.

Evaluating this at m = 0 gives |E||A| = nd which is supposed throughout this theorem
anyway and so is redundant. Evaluating this at nonzero m yields Ê(m)Â(m) = 0. This
is then equivalent to (c) as the process is invertible using the inverse Fourier transform.
Conditions (e) and (f) are immediately seen to be equivalent to condition (d). Note that
Dir(E)∩Dir(A) 6= ∅ if and only if there exists e 6= e′ ∈ E, a 6= a′ ∈ A such that e−e′ = a−a′

if and only if e+a = e′+a′ = α expresses α as a sum of an element of E with an element of
A in two or more distinct ways. Thus (g) and (a) are equivalent as condition (g) happens
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if and only if |E + A| = |E||A| = |Zd
n| if and only if condition (a) holds. When n = p

is a prime and s ∈ Zp − {0} let S = {x ∈ Z
d
p|x = se for some e ∈ E}. We will write

S = s ·E in this situation. Then a quick computation shows that Ŝ(~m) = Ê(s~m) and so by
Lemma 2.1 we conclude that Z(Ŝ) = Z(Ê). As |S| = |E| also, it follows by the equivalence
of (d) and (a) that (E,A) is a tiling pair if and only if (sE,A) is a tiling pair. As it also
clear that (E,A) is a tiling pair if and only if (A,E) is, it then follows that (sE, tA) is
a tiling pair whenever (E,A) is where s, t ∈ Zp − {0} are arbitrary. Thus if (E,A) tiles,
then (sE, tA) tiles for all t, s ∈ Zp − {0} and thus by (g), Dir(sE) ∩ Dir(tA) = ∅ and so
s · Dir(E) ∩ t · Dir(A) = ∅. As DirC(E) = ∪s∈Zp−{0}s · Dir(E) and similarly for DirC(A)
we conclude that (E,A) a tiling pair implies DirC(E) ∩ DirC(A) = ∅ which immediately
gives the equivalence of (g) and (h) as we already knew the equivalence of (g) with (a).

Finally it is easy to check from the initial definition of a tiling pair that (E,A) a tiling
pair implies (E +m1, A+m2) a tiling pair. Combined with the previous observation this
implies (sE + m1, tA + m2) is a tiling pair for all m1,m2 ∈ Z

d
p, s, t ∈ Zp − {0}. Finally

note that (E,A) tiling implies there is at most one element x ∈ E ∩A. This is because if
there were two distinct elements x, y ∈ E ∩A then x+ y = α = y+x expresses α as a sum
of something in E and something in A in two distinct ways contradicting the definition of
tiling. Thus if ~0 ∈ E ∩A we have indeed E ∩A = {~0} as claimed.

Corollary 3.2. Let (E,A) be a tiling pair in Z
d
p and let ψB, ~m : Zd

p → Z
d
p be a general affine

transformation given by ψB, ~m(~x) = B~x+ ~m for some invertible d× d matrix B ∈ GLd(Zp),
and translation vector ~m ∈ Z

d
p. Then:

(1) (ψB, ~m(E), ψB, ~m(A)) is a tiling pair. Thus the property of being a tiling pair is invari-
ant under affine transformations.

(2) (A,E) is a tiling pair. Thus the property of being a tiling pair is symmetric.

(3) (sE, tA) is a tiling pair for any s, t ∈ Zp − {0}. Thus the property of being a tiling
pair is invariant under independent scalings.

Proof. It is easy to check that (E,A) a tiling pair then (B(E),B(A)) is a tiling pair directly
from the definition of tiling pair. The rest then follows immediately from Theorem 3.1.

Note that part (3) of this corollary does not follow from part (1) unless s = t. The
point of (3) is that the scalings of E and A can be taken independently, i.e., by different
amounts.

4 Spectral sets

A subset E ⊆ Z
d
n is a called a spectral set if it has a spectrum B ⊆ Z

d
n such that the set

of characters
{χ(b · ())|b ∈ B}
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forms an orthogonal basis of L2(E), the vector space of complex valued functions on E
with Hermitian inner product < f, g >=

∑
e∈E f(e)ḡ(e). We call (E,B) a spectral pair.

Note that in this situation L2(E) has a basis of size |B| by definition. On the other hand,
L2(E) also has a basis of functions {δe|e ∈ E} where δe(x) = 1 when x = e and δe(x) = 0
when x 6= e. As any two basis of a finite dimensional vector space have the same size, we
conclude |E| = |B| when (E,B) is a spectral pair.

Theorem 4.1. Let E,B be subsets of Zd
n with |E| = |B|. The following are equivalent:

(a) (E,B) is a spectral pair.

(b) Every function f : E → C can be written as f(x) =
∑

b∈B cbχ(b · x) for unique
complex numbers {cb|b ∈ B} and all x ∈ E. Furthermore

∑
x∈E χ((b− b

′) ·x) = 0 for
distinct b, b′ ∈ B.

(c) Ê(b− b′) = 0 for all b 6= b′ ∈ B.

(d) Ê(Dir(B)) = 0.

(e) Write E = {e1, . . . , eN} and B = {b1, . . . , bN}. The complex matrix M ∈ MatN (C)
whose (i, j)-entry is given by Mij = χ(ei ·bj) is a Butson-type Hadamard matrix, i.e.,
its entries are nth roots of unity and it satisfies M∗

M = NI, i.e., its rows (equivalently
columns) are orthogonal and all have norm N under the Hermitian inner product.
Here, as usual, M∗ is the complex conjugate of the transpose of M.
In particular this means (E,B) is a spectral pair if and only if (B,E) is spectral pair.

When n = p a prime, these are also equivalent to:

(f) Ê(DirC(B)) = 0.

(g) Write E = {e1, . . . , eN} and B = {b1, . . . , bN}. The Zp-valued matrix L = log(M) ∈
MatN (Zp) whose (i, j)-entry is given by Lij = ei · bj ∈ Zp is a Zp-valued Log-
Hadamard matrix, i.e., the difference of any two distinct rows (equivalently columns)
of L is a balanced vector.

Proof. The first part of (b) merely states what it means for the set {χ(b · ())|b ∈ B} to be a
basis of L2(E). The equation

∑
x∈E χ((b− b′)x) = 0 for distinct b, b′ ∈ B is a restatement

of the orthogonality of this basis. Thus (b) is clearly equivalent to (a). Note that given
|E| = |B|, the fact that {χ(b · ())|b ∈ B} is an orthogonal basis follows immediately from
the orthogonality of these functions. This is because the functions χ(b · ()) are never zero
and a collection of nonzero orthogonal elements must be linearly independent and hence
form a basis as the number of elements in this collection is the same as the dimension of the
ambient vector space by assumption. Now note that orthogonality

∑
x∈E χ((b− b

′) ·x) = 0

is equivalent to Ê(b − b′) = 0 for all b, b′ distinct in B. Thus (c) is equivalent to (b).
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(d) is equivalent to (c) by definition of Dir(B). The orthogonality of the columns of M
is equivalent to the orthogonality described in (c) and so (e) is equivalent to (c) once one
notes that the outputs of χ are always nth roots of unity. This column orthogonality is
equivalent to the equation M

∗
M = NI which establishes 1

N
M

∗ is M−1 and hence implies
the equation MM

∗ = NI which then gives row orthogonality. (Thus in general the matrix
M will have orthogonal columns if and only if it has orthogonal rows). Thus we conclude
that (E,B) is a spectral pair if and only if (B,E) is one.

When n = p is a prime, Lemma 2.1 shows that (f) is equivalent to (d). It also shows
that Ê(b − b′) = 0 if and only if the values of e · (b − b′) equidistributes in Zp as e varies
over E. This happens if and only if the difference of any two distinct columns of L is a
balanced vector. Note that as (B,E) is a spectral pair also, we have B̂(e − e′) = 0 for
distinct e, e′ ∈ E and so we can see the difference of two distinct rows of L is also a balanced
vector.

Corollary 4.2. Let E,B ⊆ Z
d
n then:

(a) When |E| = |B| = 1, (E,B) is a spectral pair so singleton sets are spectral.

(b) When |E| = |B| = nd then (E,B) is a spectral pair so the whole space Z
d
n is a spectral

set.

(c) If E is a spectral set with |E| > 1 then |E| is a multiple of p.

Proof. Case (a) follows as χ(b · x) is nonzero and hence forms a tautologically orthogonal
basis of the 1-dimensional vector space L2(E). Case (b) follows by standard orthogonality
of characters of Zd

n.
When |E| > 1 let B be the spectrum of E with |E| = |B| = N . Then by part (g) of
Theorem 4.1 we have the difference of distinct columns of the N ×N dot-product matrix
L are balanced vectors. Thus if there are two distinct columns (i.e., N > 1), we must have
N is a multiple of p as balanced vectors over Zp must have dimension a multiple of p.

Corollary 4.3. Let E,B ⊆ Z
d
n. Suppose (E,B) is a spectral pair then:

(a) The pair (B,E) is also a spectral pair.

(b) If A is an invertible d× d matrix over Zn then (A ·E,A−T ·B) is also a spectral pair.
Here A

−T is the inverse transpose matrix of A.

(c) Let n = p a prime then (aE +m1, bB +m2) is a spectral pair for any a, b ∈ Zp −{0}
and m1,m2 ∈ Z

d
p.

Proof. Part (a) was proven during the proof of Theorem 4.1. To proof part (b), just note
that the matrix H with (i, j) entry given by χ(ei · bj) with respect to some ordering of the
sets E,B is the same as the matrix with (i, j) entry given by χ(Aei ·A

−T bj) Thus the pair
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(E,B) is spectral if and only if the pair (A · E,A−T · B) is spectral by Theorem 4.1 part
(e).

Now let n = p a prime. If (E,B) is a spectral pair then Ê(DirC(B)) = 0 by Theorem 4.1
part (f). As DirC(B) = DirC(b · B + m2) for any nonzero b ∈ Zp and vector m2 ∈ Z

d
p,

we conclude Ê(DirC(b · B + m2)) = 0 also and so (E, b · B + m2) is a spectral pair.
Using part (a) of this corollary a similar argument can be made for the first slot yielding
that (a · E + m1, b · B + m2) is a spectral pair for any a, b ∈ Zp − {0} and any vectors
m1,m2 ∈ Z

d
p.

Thus just as for tiling sets, the last corollary shows that the property of being a spectral
pair is symmetric and stable under independent scalings and translations. Furthermore
the property of being a spectral set is an affine invariant, i.e., preserved under arbitrary
invertible linear transformations and translations.

4.1 Direction Cones and Projections

Our final result in this section concerns a gap in the possible sizes of spectral sets E ⊆ Z
d
p.

It follows from a result on direction cones of sets in [7] - as the proof in that paper contains
some minor typos we provide a self-contained cleaner proof here. For the proof, we will
say that a linear map A : Zd

p → Z
d
p is a projection onto a subspace V if A2 = A and A~v = ~v

if and only if ~v ∈ V .

Theorem 4.4 (From [7]). Let E ⊆ Z
d
p then:

(a) If |E| > pd−1 then DirC(E) = Z
d
p − {0}, i.e., E determines all directions.

(b) More generally if |E| > pd−s for some 1 ≤ s ≤ d, then there is a (d-s+1)-dimensional
subspace V such that DirC(E) projects onto DirC(V ).

Proof. We first prove (a) by contraposition. Suppose E misses a direction. Then there is
a line ℓ through the origin such that ℓ∩DirC(E) = ∅. Consider a linear projection A onto
a hyperplane H complementary to ℓ, with kernel the line ℓ. It follows that for distinct
elements e, e′ ∈ E, e − e′ /∈ ℓ and so Ae 6= Ae′ ∈ H. Thus A bijects E with a subset of H
and so |E| ≤ |H| = pd−1 and we are done.

Now let us prove part (b). Suppose we have constructed a chain of nested subspaces
Z
d
p = V0 ⊇ V1 ⊇ V2 · · · ⊇ Vk where Vk has codimension k in Z

d
p and where DirC(E) does not

project onto DirC(Vj) under a projection to Vj for 0 ≤ j ≤ k and furthermore E′ = AE
is a bijective image of E under a projection onto Vk. Then by assumption DirC(E′) is
not all of the (punctured) space Vk and so misses a line ℓ in Vk. We can then project Vk
to a subspace Vk+1 of codimension 1 in Vk (and hence codimension k + 1 in Zd

p) under a
projection B with kernel ℓ. The map B then takes E′ bijectively to a set E′′ ⊆ Vk+1 as
Dir(E) ∩ ℓ = ∅ and hence we have constructed an extension of the original chain.
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This process must eventually terminate within d steps and so there must exist a first
point in this chain say Vm where DirC(E) maps onto the (punctured taking the origin out)
space Vm. As E bijects with a subspace of Vm by construction, we have pd−s < |E| ≤ pd−m

and so d −m > d − s and so d −m ≥ d − s + 1. Taking a (d-s+1) dimensional subspace
of Vm as V yields a (d − s + 1)-dimensional subspace such that DirC(E) projects onto
DirC(V ) = V − {0} and hence gives (b).

This yields a corollary which says that there are no spectral sets of sizes strictly between
pd−1 and pd in Z

d
p.

Corollary 4.5. Let (E,A) ⊆ Z
d
p be a spectral pair. Then |E| < pd implies |E| ≤ pd−1.

Proof. Suppose |E| < pd i.e., E is not the whole space. By Theorem 4.1, we have
Ê(DirC(A)) = 0. Thus by Theorem 4.4, we conclude that if |A| > pd−1 then DirC(A) =
Z
d
p − {0} and hence Ê(m) = 0 for all nonzero m. This implies the characteristic function

of E is a constant function so E is either the empty set or the whole space both contrary
to our hypothesis. Thus |A| = |E| ≤ pd−1 and we are done.

We warn the reader that in Theorem 4.4, one cannot replace the condition that DirC(E)
projects onto DirC(V ) for a subspace V with the condition that it contains DirC(V ) as the
two concepts are quite different in general as the following example shows:

Example 4.6 (Random Cones). Let p be a prime and let us generate random cones in Z
d
p

with the following process: Fix a real number 0 < α < 1 and let C be the random cone
obtained by letting each line through the origin be in C with probability α independently
of whether other lines are in C or not. Note that any given cone can be the outcome of
this random binomial process though cones where the proportion of lines in C is close to
α are most likely.

Then if d ≥ 3, almost surely as p → ∞, a random cone C has the property that it
linearly projects onto H − {~0} for every hyperplane H and hence onto the direction cone
of any proper subspace of Zd

p and also has the property that C almost surely does not
contain V − {0} for any subspace V of dimension ≥ 2.

Proof. Given a subspace V of dimension two, V −{0} consists of the union of p2−1
p−1 = p+1

disjoint (punctured by taking origin out) lines through the origin. The chance that the
random cone C contains V −{0} is hence αp+1. As the number of 2-dimensional subspaces

in Z
d
p when d ≥ 3 is (pd−1)(pd−p)

(p2−1)(p2−p)
we see that an upper bound on the probability that

the random cone C contains some (punctured) 2-dimensional subspace is (pd−1)(pd−p)
(p2−1)(p2−p)α

p+1

which tends to zero as p→ ∞ (and d fixed). Thus almost surely as p→ ∞, a random cone
contains no (punctured) subspace of dimension ≥ 2 as claimed.
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Now let H be a hyperplane through the origin and ~v ∈ H − {0}. Let π : Zd
p → H be a

linear projection onto the hyperplane H. Now π−1(v) is a line which does not go through
the origin and hence intersects exactly p lines through the origin. Thus the probability
that π(C) does not contain v is equal to (1 − α)p. It follows that the probability that

π(C) 6= H − {0} is bounded above by (pd−1 − 1)(1 − α)p. As there are pd−1
p−1 hyperplanes

in Z
d
p, the probability that there is some hyperplane H such that C does not project onto

H − {0} under some linear projection is bounded above by pd−1
p−1 (p

d−1 − 1)(1 − α)p which
tends to zero as p → ∞. Thus with probability 1 as p → ∞, a random cone will linearly
project onto every hyperplane. Combined with the previous paragraph, this finishes the
proof that the example works as claimed.

4.2 Extracting spectral pairs in a given dimension from log-Hadamard

matrices of suitable rank

In this subsection, let n = p a prime. We will prove an equivalence between the existence of
a spectral pair (E,B) in Z

d
p with |E| = |B| = m and the existence of am×m log-Hadamard

matrix over Zp of rank less than or equal to d.

Theorem 4.7. Let p be a prime. Then the existence of a spectral pair (E,B) in Z
d
p with

|E| = |B| = m is equivalent to the existence of a m×m log-Hadamard matrix with entries
in Zp with rank less than or equal to d.

Proof. If E,B ⊆ Z
d
p with |E| = |B| = m, let us order the sets E = {e1, . . . , em}, B =

{b1, . . . , bm} arbitrarily. Then we can associate matrices E and B to these sets where the
ith row of E (respectively B) is ei (respectively bi). Thus E and B are m× d matrices and
hence have rank less than or equal to d. Let L = EB

T be the corresponding matrix of dot
products of vectors of E and B which will be am×m matrix with entries in Zp. It has rank
less than or equal to d as the rank of a product of matrices is no more than the minimum
of the ranks of the factors. Finally if (E,B) is a spectral pair, by Theorem 4.1, L is a log-
Hadamard matrix. Thus the existence of a spectral pair (E,B) in Z

d
p with |E| = |B| = m

has been shown to imply the existence of a m×m log-Hadamard matrix L with entries in
Zp and rank less than or equal to d.

It remains to prove the converse so assume that we are given a m×m log-Hadamard
matrix L of rank less than or equal to d. Using the standard basis of Zm

p ,L gives rise to a
linear operator L : Zm

p → Z
m
p whose image is at most d dimensional. This operator can be

factored as the composition of two linear operators L : Zm
p → Im(L) and J : Im(L) → Z

m
p

where J is just an inclusion. Choosing a basis for Im(L), these operators can be represented
by k×m matrix C and m× k matrix E with k = dim(Im(L)) ≤ d. Thus L = EC. Setting
B = C

T we get L = E·BT form×k matrices E and B. The row vectors of E must be distinct
as if two rows of E are the same then the corresponding rows of L = EB

T are the same
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contradicting that L is log-Hadamard (the difference of distinct rows must be balanced and
the zero vector is not balanced). Similarly distinct rows of B cannot be the same or two
distinct columns of L would equal which would contradict L being log-Hadamard. Thus
we may define sets E,B ⊆ Z

k
p with |E| = |B| = m by letting E be the set containing

the row vectors of E and B be the set containing the row vectors of B. As L = EB
T is

log-Hadamard, Theorem 4.1 implies that (E,B) is a spectral pair in Z
k
p. Finally as k ≤ d

we may view Z
k
p ⊆ Z

d
p via an inclusion whose image are the vectors with zero in the last

d − k slots. This identifies (E,B) as a spectral pair in Z
d
p (the pair is still spectral as its

dot product matrix is unchanged) with |E| = |B| = m and the proof is hence complete.

An explicit way to construct the spectral pair (E,B) in Z
d
p with |E| = |B| = m given

an m×m log-Hadamard matrix L with entries in Zp of rank equal to d is as follows.
Let r1, . . . , rd be d linearly independent rows of L (each ri ∈ Z

m
p ). Every row of L is a

linear combination of the rj so there exist eij ∈ Zp such that for all i = 1, . . . ,m

(ith row of L) =

d∑

j=1

eijrj .

Now let E be the m × d matrix whose (i, j)-entry is eij and B be the m × d matrix
whose ith column (and not row) is ri. The choice of the eij ensures that L = EB

T .
Finally, E is taken to consist of the m distinct rows of E and B to consist of the m

distinct rows of B.

5 More on log-Hadamard matrices and balanced vectors

We present some results on log-Hadamard matrices and balanced vectors that are of a more
theoretical nature.

5.1 Equivalence of log-Hadamard matrices

Fix p a prime. Given a balanced Zp-vector ~v, adding a multiple of the all 1 vector 1

to ~v preserves the balanced property. Thus given a log-Hadamard matrix L, we may add
(different) multiples of 1 to the rows (and columns) of L to get a new log-Hadamard matrix
L. We may also permute rows or columns and the log-Hadamard property is preserved.

Definition 5.1. We say that twom×m log-Hadamard matrices L,L′ over Zp are equivalent
if one can be obtained from the other through a sequence of row permutations, column
permutations and additions of multiples of 1 to rows (and columns).

Thus every log-Hadamard matrix is equivalent to a dephased log-Hadamard matrix,
i.e., one whose leftmost column and topmost row consists of all zeros. Note in a dephased
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log-Hadamard matrix, all rows besides the top row consist of balanced vectors and all
columns besides the leftmost one consist of balanced vectors. The reader can check that
this notion of equivalence is equivalent to the usual notion for Hadamard matrices in the
literature.

Note given a spectral pair (E,B) ∈ Z
d
p, we may translate E and B separately to get

a new spectral pair (E′, B′) ∈ Z
d
p with ~0 ∈ E ∩ B. Ordering these sets so that ~0 is listed

first, the corresponding dot product matrix L = EB
T is a dephased log-Hadamard matrix.

Thus we get this immediate corollary of Theorem 4.7:

Corollary 5.2. Fix p a prime. The following are equivalent:

(1) There exists a m×m log-Hadamard matrix L of rank less than or equal to d over Zp.

(2) There exists a spectral pair (E,B) in Z
d
p with |E| = |B| = m.

(3) There exists a spectral pair (E,B) in Z
d
p with |E| = |B| = m and ~0 ∈ E ∩B.

(4) There exists a m×m dephased log-Hadamard matrix L of rank less than or equal
to d over Zp.

Note 1 × 1 matrices are trivially log-Hadamard but the next smallest possible size is
p × p as the difference of distinct rows must be balanced and hence in particular have
dimension a multiple of p. A p× p log-Hadamard matrix is equivalent to a unique matrix
of the form

L =




0 0 0 . . . 0
0 1 2 . . . p− 1
0 2 ∗ . . . ∗
...

...
...

...
...

0 p− 1 ∗ . . . ∗




i.e. with zero top row and left column and where the next row and column is given by
the balanced vector (0, 1, 2, . . . , p − 1) (or its transpose). We shall call this the special
dephased form of a p× p log-Hadamard matrix.

It is convenient to use the convention that the leftmost column and top row are called
the 0th column and 0th row instead of the usual convention of calling it the 1st. With
this convention the p × p matrix [ij] whose (i, j)-entry is ij, 0 ≤ i, j ≤ p − 1 is a special
dephased log-Hadamard matrix.

It is not hard to show that [ij] is the only special dephased log-Hadamard matrix when
p = 3, 5 but for higher p there exist other examples. Note that in a special dephased
p × p log-Hadamard matrix, all rows past the 0th and 1st row correspond to bijections
ψ : Zp → Zp such that ψ(0) = 0 and x → ψ(x) − x is also a bijection of Zp. Affine
bijections of the form Ψ(j) = ij for a constant i ∈ Zp − {0, 1} are examples of such and
correspond to the matrix [ij]. For p = 3, 5 these are the only such bijections but for p ≥ 7
there exist other examples as the reader can computationally verify.
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In general an mp × mp log-Hadamard matrix will be said to be in special dephased
form if it is in the form where its 0th row and column are the zero vector and its 1st row
and column are the vector (0, 1, 2, . . . , p − 1, 0, 1, 2 . . . , p − 1, . . . , 0, 1, 2, . . . , p − 1) (or its
transpose). Any mp×mp log-Hadamard matrix is equivalent to such a matrix.

It is useful to consider the structure of the 2nd row in such a special dephased log-
Hadamard matrix. We introduce variables to codify the choices for this row.

Let xij be the number of i’s in the 2nd row below a j in the 1st row where 0 ≤ i, j ≤ p−1.
We put these in a p × p matrix called X whose (i, j)-entry is xij . The reader may verify
that as the 2nd row is balanced, the column sums of this matrix are all m and that as the
1st row is balanced, the row sums of this matrix are all m also. Finally as the difference
of the 2nd row and 1st row is balanced, all the “diagonal” sums

∑p−1
i=0 xi,i+s are also equal

to m. The reader may also verify that given any matrix with nonnegative integer entries,
with these constraints one can construct a suitable 2nd row (unique up to permutations
amongst slots in the 1st row with the same entry). Similar comments apply to any row
after the 2nd one also.

Thus in the construction of special dephased mp×mp log-Hadamard matrices, we are
lead to an important class of matrices which we define now:

Definition 5.3. Fix a prime p. A p× p, matrix X with nonnegative integer entries whose
row sums, column sums and diagonal sums

∑
iXi,i+s for any 0 ≤ s ≤ p − 1 all add up

to m is called a Davey matrix of weight m. (Here we take the row and column indices of
X to take values in Zp.) The set of such matrices will be denoted by Dm. The sum of a
matrix in Dm with one in Dn is in Dm+n so D = ∪∞

m=0Dm is an Abelian monoid under
matrix addition called the Davey monoid. The Grothendieck construction on D yields an
Abelian group called D̂, the Davey group. To emphasize the dependence on the prime p,
we sometimes will write D(p) and D̂(p).

We will carefully go through some examples to clarify the structure of the Davey monoid
D(2) and D(3).

It is a fact from the matching theory of graphs (an exercise in [17]) that a matrix with
nonnegative integer entries whose row sums and column sums all equal to m can be written
as a sum of m permutation matrices (not necessarily distinct).

When p = 2 we are dealing with 2 × 2 matrices and there are only two permutation
matrices. Thus a Davey matrix will be a matrix of the form X = ℓ1I+ ℓ2T where

T =

[
0 1
1 0

]
.

Thus

X =

[
ℓ1 ℓ2
ℓ2 ℓ1

]

and the row sums and column sums all equal to m = ℓ1 + ℓ2 which is hence the weight.
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in order to be a Davey matrix, all the diagonal sums (not just the main diagonal) have
to also equal m = ℓ1 + ℓ2. This forces ℓ1 + ℓ1 = ℓ1 + ℓ2 = ℓ2 + ℓ2 and so ℓ1 = ℓ2 and so the
weight m = 2ℓ1 has to be even. We have proven

Theorem 5.4. Any 2 × 2 Davey matrix is of the form ℓ

[
1 1
1 1

]
and so has even weight

m = 2ℓ. Thus the Davey monoid D(2) is isomorphic to the natural numbers under addition

via isomorphism θ : N → D(2) given by θ(ℓ) = ℓ

[
1 1
1 1

]
. Thus the Davey group D̂(2) is

isomorphic to the integers, i.e., D̂(2) ∼= Z.

This yields the following corollary:

Corollary 5.5. Let (E,B) be a spectral pair in Z
d
2, then either |E| = 1, 2 or |E| is a

multiple of 4.

Proof. We may assume ~0 ∈ E ∩B and |E| > 2. We then know that |E| = 2m is a multiple
of 2 by Theorem 4.1. The matrix L = EB

T is a dephased 2m× 2m log-Hadamard matrix
which can be made special dephased by suitable ordering of the elements of E and B. As
|E| > 2 we know there is a 2nd row (labelling top row as 0th row) and so by the previous
discussion there must exist a 2× 2 Davey matrix of weight m whose (i, j)-entry is given by
the number of i’s in the 2nd row below a j in the 1st row. By Theorem 5.4 we conclude
m = 2k is even and so |E| = 2m = 4k is a multiple of 4.

The Davey monoid and group often encode intricate structure constraints for log-
Hadamard matrices and their corresponding Butson-type Hadamard matrices. However
the difficulty of explicit computation of these goes up enormously with the prime p.

We will now conduct the computation for the prime p = 3. Thus we are considering
3× 3 matrices with nonnegative integer entries X whose column sums, row sums and (all)
diagonal sums add up to a fixed weight m. Such a matrix must in particular be a sum of
m (not necessarily) distinct permutation matrices. There are 3! = 6 of these now so the
computation is more ugly:

X = ℓ1I+ ℓ2σ1 + ℓ3σ2 + ℓ4σ3 + ℓ5τ + ℓ6τ
2

where σ1 =



0 1 0
1 0 0
0 0 1


 , σ2 =



0 0 1
0 1 0
1 0 0


 , σ3 =



1 0 0
0 0 1
0 1 0


 , τ =



0 1 0
0 0 1
1 0 0


 and τ2 =



0 0 1
1 0 0
0 1 0


.

The matrices σ1, σ2, σ3 have all their diagonal sums (not just main diagonal) equal and
so X = ℓ1I+ ℓ2σ1+ ℓ3σ2+ ℓ4σ3+ ℓ5τ + ℓ6τ

2 is Davey if and only if ℓ1I+ ℓ5τ + ℓ6τ
2 is Davey.
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A quick computation of the diagonal sums of this last expression shows that this happens

if and only if 3ℓ1 = 3ℓ5 = 3ℓ6 in which case this last expression equals ℓ1



1 1 1
1 1 1
1 1 1


 the all

one-matrix. However this all one matrix is also the sum σ1 + σ2 + σ3. Thus we conclude
that any 3× 3 Davey matrix can be written uniquely in the form s1σ1 + s2σ2 + s3σ3.

We summarize these results in the following theorem:

Theorem 5.6. The set of 3× 3 Davey matrices are those matrices of the form

s1



0 1 0
1 0 0
0 0 1


+ s2



0 0 1
0 1 0
1 0 0


+ s3



1 0 0
0 0 1
0 1 0




for suitable unique nonnegative integers s1, s2, s3. Thus D(3) ∼= N
3 and D̂(3) ∼= Z

3.

We will use Theorem 5.6 to give a self-contained human-readable proof that the Fuglede
conjecture holds in Z

3
3 in a later section. Of course computer calculations can also be used

to establish the same result. The precise form needed to prove this conjecture is stated in
the next corollary:

Corollary 5.7. Given ~x, ~y equi-dimensional balanced vectors over Z3 whose difference is
~x− ~y is also balanced, we have the triplet rule: For any fixed distinct values for i, j, k in
Z3, the number of coordinates where the value of ~x is i and the value of ~y is j is equal to
the number of coordinates where the value of ~x is j and the value of ~y is i and these also
equal the number of coordinates where both ~x and ~y have value k.

Proof. Let X be the matrix whose (m,n)-entry is equal to the number of coordinates where
~x has value m and ~y has value n. X is a 3× 3 Davey matrix. By theorem 5.6 we must have

X =



s3 s1 s2
s1 s2 s3
s2 s3 s1




for some nonnegative integers s1, s2, s3. The result follows immediately from this.

5.2 Balanced vectors

Fix a prime p. Recall that a Zp vector is balanced if each element of Zp occurs the same
number of times as a coordinate of the vector. It is clear that balanced vectors exist
only in dimensions mp where m ≥ 1 is an integer. We denote by Bm the set of balanced
mp-dimensional vectors over Zp.

Notice that Bm is a cone as if ~v ∈ Bm, then c~v ∈ Bm for all c ∈ Zp−{0}. Furthermore as
adding any multiple of the all one vector 1 to a balanced vector ~v yields a balanced vector,
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we see that Bm is a union of 2-planes through the origin containing the line through 1 with
this line taken out. Indeed if ~v ∈ Bm then c~v +m1 ∈ Bm for all m ∈ Zp, c ∈ Zp − {0}.
Thus the whole 2-plane spanned by ~v and 1 minus the line through 1 is contained in Bm.

The symmetric group σmp acts on Z
mp
p by permuting coordinates and this action pre-

serves the cone Bm. As every subset of a vector space over a finite field is an algebraic set
(zero set of collection of polynomials) we conclude that Bm must be the common zero set
of a collection of symmetric polynomials which we will identify explicitly next.

Let x1, x2, . . . , xmp denote the standard coordinate variables of Z
pm
p . Consider the

formal polynomial in new variable t given by p(t) = (t− x1)(t− x2) . . . (t− xmp) then p is
a monic polynomial in the variable t of degree mp.

The vector ~x = (x1, . . . , xmp) is balanced if and only if the associated formal polynomial
p(t) = (t− x1)(t− x2) . . . (t− xmp) considered in Zp[t] is equal to the polynomial

tm(t− 1)m(t− 2)m . . . (t− (p− 1))m = (t(t− 1)(t − 2) . . . (t− (p− 1)))m = (tp − t)m.

Recall the elementary symmetric polynomials σ1, . . . , σmp given by σ1 = x1 + · · · +
xmp, σ2 =

∑
i<j xixj , σ3 =

∑
i<j<k xixjxk, . . . , σmp = x1x2 . . . xmp satisfy p(t) = (t −

x1)(t− x2) . . . (t− xmp) =
∑mp

j=0(−1)jtmp−jσj. (Here we adopt the convention that σ0 = 1
for convenience.)

Thus the we see that ~x = (x1, . . . , xmp) is a balanced vector if and only if p(t) =∑mp
j=0(−1)jtmp−jσj = (tp − t)m. Expanding (tp − t)m =

∑m
i=0

(
m
i

)
(−1)itp(m−i)+i using the

binomial formula, we see this is equivalent to the conditions that σj = 0 when j is not a
multiple of p− 1 and σi(p−1) = (−1)i

(
m
i

)
for all 0 ≤ i ≤ m and σi(p−1) = 0 for all i > m.

We have thus proven the following theorem:

Theorem 5.8 (Geometry of the set of balanced vectors). Fix p a prime and let Bm denote
the set of balanced vectors in Z

pm
p . Then Bm is a cone. In fact Bm is a union of 2-spaces

containing the line through 1, the all one vector, minus this line. Furthermore Bm can be
given as the solution set to the following polynomial equalities:

σj = 0

when j is not a multiple of p− 1, and

σi(p−1) = (−1)i
(
m

i

)

where σi are the elementary symmetric polynomials in the coordinate variables of Zpm
p .

Note the elementary symmetric polynomial σj is homogeneous of degree j in the sense
that σj(cx1, . . . , cxmp) = cjσj(x1, . . . , xmp). The fact that Bm is a cone and hence invariant
under nonzero scalings is consistent with the equations obtained above as cp−1 = 1 when
c ∈ Zp − {0}.

The following is a cute corollary:

18



Corollary 5.9 (Wilson’s Theorem). As the vector ~x = (0, 1, 2, . . . , p− 1) ∈ B1 it satisfies
σp−1(0, 1, 2, . . . , p−1) = −1. This simplifies to (p−1)! = −1 in Zp which is the well known
Wilson’s Theorem.

6 Preliminary Results

We proceed to prove parts of Theorem 1.1 on tiling and spectral sets of specified size.

6.1 Graphs of functions

We begin with a short account of graphs. Let V be a k-dimensional subspace of Zd
p and

W any complementary subspace in the sense that Z
d
p is the direct sum of V and W . To

keep the notation simple we sometimes express elements of Zd
p as the ordered pairs (v,w)

for unique v ∈ V and w ∈W .
Given a function f : V → W we define the graph of f (relative to V , W ) to be the

following subset of Zd
p:

GraphV,W (f) = {(v, f(v)) : v ∈ V } ⊆ Z
d
p.

We suppress the subscripts in the cases where V,W are unambiguously determined from
the context.

Note that upon a choice of basis for V and W , the set of functions f : V →W can be
identified with the set of functions f : Zs

p → Z
d−s
p when dim(V ) = s.

Note in the case dim(V ) = 0 the graph sets GraphV,W (f) are just the singleton subsets
and in the case dimV = d, the graph sets are the whole space.

The purpose of this subsection is to prove the following characterisation of graphs:

Proposition 6.1. Let V be a subspace of Zd
p, W any complementary subspace of V , and

E ⊆ Z
d
p. (E,V ) is a tiling pair if and only if E is a graph of a function f : W → V .

Proof. Suppose first that (E,V ) is a tilling pair. By Corollary 3.2 we know that (V,E) is
a tiling pair. We deduce from this that E contains precisely one element in each coset of
V . Suppose that both e and e′ belong to the coset x + V . Then both cosets e + V and
e′ + V equal x+ V (V is a subspace). As (V,E) tiles, we have e = e′.

Therefore one can identify elements of E with cosets of V . The latter can also be
identified with elements of the complementary subspaceW . So to each w ∈W corresponds
a unique ew ∈ E given by E ∩ (w + V ) = {ew}. In the notation introduced above ew =
(w, f(w)) where f(w) is a unique vector in V . This defines a function f : W → V with
the property that E = GraphW,V (f). Note that we made use of the fact that V is a
complementary subspace to W .

Conversely, suppose that f : W → V is a function and E = {(w, f(w)) : w ∈ W}.
(E,V ) is a tiling set because |E||V | = |W ||V | = pd and the translates E + v are disjoint
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because the elements of E + v are of the form (w, f(w) + v) for some w ∈ W and so
(w, f(w) + v) = (w′, f(w′) + v′) implies (by looking at the first and then at the second
coordinate) that w = w′ and v = v′.

6.2 Subspaces as spectral and tiling partners

The proposition above classifies tiling sets with subspace tiling partners. We now prove
that such sets are also spectral sets and a converse.

Proposition 6.2. Let V be a subspace of Zd
p, V

⊥ the orthogonal complement of V , and

E ⊆ Z
d
p. (E,V ) is a tiling pair if and only if (E,V ⊥) is a spectral pair. This happens

exactly when E is the graph of a function f :W → V for some complement W of V .

Prior to proving the proposition we give a proof of a well known fact about the Fourier
transform of characteristic sets of subspaces.

Lemma 6.3. Let V be a subspace of Zd
p and V ⊥ its orthogonal complement. Writing V

for the characteristic function of the subspace, we have

V̂ (m) =

{
|V |
pd

, m ∈ V ⊥

0 , m /∈ V ⊥
.

Proof. If m ∈ V ⊥, then m · v = 0 for all v ∈ V and so

V̂ (m) =
1

pd

∑

v∈V

χ(−m · v) =
|V |

pd
.

If m /∈ V ⊥, then V is not contained in the hyperplane {x ∈ Z
d
p : x ·m = 0}. We will show

that in this case V equidistributes on the p parallel hyperplanes Hm,t = {x |x ·m = t},

t = 0, 1, 2, . . . , p− 1. Lemma 2.1 implies that V̂ (m) = 0.
Let

Vt = {v ∈ V | v ·m = t}

be the intersection of V with the hyperplane Hm,t. By our assumption V 6= V0, so there
exist 0 6= t ∈ Zp and vt ∈ V such that vt ·m = t. It follows immediately that Vt = vt + V0
and so that |Vt| = |V0|. Similarly, V2t = 2vt + V0, which in turn implies |V2t| = |V0|.
Repeating the same argument shows that |Vit| = |V0| for all i ∈ Zp, which is equivalent to
|Vt| being constant for all t ∈ Zp.

We now give a proof of the above proposition.

Proof of Proposition 6.2. Suppose first that (E,V ) is a tilling pair. We know from Theorem
3.1 that |E||V | = pd and that Ê(x)V̂ (x) = 0 for all 0 6= x ∈ Z

d
p. From this we deduce that
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|V ⊥| = |E| and that Ê(x − x′) = 0 for all distinct x, x ∈ V ⊥. By Theorem 4.1, we then
have that (E,V ⊥) is a spectral pair.

The first property is straightforward. |V ⊥| = pd/|V | = |E|. For the second observe that
V ⊥ is a subspace and so x− x′ ∈ V ⊥. The lemma above implies that V̂ (x − x′) 6= 0 and
so we must have Ê(x− x′) = 0.

Conversely now, suppose that (E,V ) is a spectral pair. We know from Theorem 4.1
that |E| = |V | and that Ê(x− x′) = 0 for all distinct x, x′ ∈ V . From this we deduce that

|V ⊥||E| = pd and that Ê(x)V̂ ⊥(x) = 0 for all 0 6= x ∈ Z
d
p. By Theorem 3.1, we get that

(E,V ⊥) is a tiling pair.
The first property is once again straightforward. |V ⊥||E| = (pd/|V |)|E| = pd. For the

second observe that if x /∈ V = (V ⊥)⊥, then the lemma above implies V ⊥(x) = 0; if on the
other hand 0 6= x ∈ V , then Ê(x) = Ê(x− 0) = 0.

6.3 Spectral and tiling sets of dimension or codimension one

The last task of this section is to prove that if a set has size p or pd−1, then the properties
of being tilling set and a spectral set are equivalent.

Proposition 6.4. Let E ⊆ Z
d
p be a set of size p or pd−1. E is a spectral set if and only if

it is a tiling set. Furthermore this happens if and only if the tiling or spectral partner can
be chosen to be a subspace and so happens if and only if E is a graph.

Proof. There are four implications to consider.
|E| = p. (i) Suppose first that E is a tiling set. We show that E tiles with a hyperplane

through the origin i.e., that there exists 0 6= v ∈ Z
d
p such that (E, span(v)⊥) is a tiling pair.

Proposition 6.2 then implies that E is a spectral set, whose spectrum is the span of v.
Let A be a tiling partner for E. By Theorem 3.1 Ê(v)Â(v) = 0 for all 0 6= v ∈ Z

d
p.

Observe that Â is not identically zero on Z
d
p − {0} because A 6= Z

d
p. So there exists v 6= 0

such that Â(v) 6= 0 and so Ê(v) = 0. Let V = span(v)⊥. If 0 6= m ∈ V ⊥ = span(v),
then Lemma 2.1 implies that Ê(m) = 0; while if m /∈ V ⊥, then Lemma 6.3 implies that
V̂ (m) = 0. So the product Ê V̂ is zero on Z

d
p − {0}. Moreover, |E||V | = p pd−1 = pd. This

proves that (E,V ) is a tiling pair as desired and we are done in this case.
(ii) Conversely now, suppose that (E,B) is a spectral pair. We show the existence of

b 6= 0 such that (E, span(b)⊥) is a tiling pair.
By Corollary 4.3 we may translate B so it contains 0. |B| = |E| = p > 1 and so there

exists 0 6= b ∈ B. For any such b we have Ê(b) = Ê(b−0) = 0. Let V = span(b)⊥. (E,V ) is
a tiling pair because it satisfies the two standard properties. Firstly, |E||V | = p pd−1 = pd.
Secondly, for every 0 6= m, either m ∈ span(b) (in which case Lemma 2.1 implies that
Ê(m) = 0) or m /∈ span(b) (in which case Lemma 6.3 implies V̂ (m) = 0). So Ê V̂ = 0 on
Z
d
p − {0}.
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|E| = pd−1. (i) Suppose first that E is a tiling set. We will show that E tiles with a
line L through the origin as partner. Proposition 6.2 then implies that E is a spectral set,
whose spectrum is L⊥.

Theorem 3.1 (g) implies that DirC(E), the direction cone of E, is not the whole of
Z
d
p−{0}. So there exists a line L that is disjoint from it. It then follows from Theorem 3.1,

that (E,L) is a tiling pair as DirC(E) ∩DirC(L) = ∅.
(ii) Conversely now, suppose that (E,B) is a spectral pair. We show there exists a line

L such that (E,L) is a tiling pair.
Corollary 4.3 implies that (B,E) is a spectral pair. Theorem 4.1 (d) implies that

B̂ = 0 on DirC(E). As B̂ 6= 0 on the whole of Z
d
p − {0} (else B = Z

d
p contradicting

|B| = |E| = pd−1), there exists a line L disjoint from DirC(E). (E,L) is a tiling pair
following the same argument used in (i).

Note that in all four cases we showed that E has a subspace as a tiling partner. Propo-
sition 6.1 implies that E is a graph. So all four hypotheses imply that E is a graph.

6.4 Spectral sets either tile or k-tile

Definition 6.5. Fix k ≥ 1 A subset E of Zd
p is said to k-tile with partner A if every vector

~x ∈ Z
d
p can be expressed as a sum of an element of E with an element of A in exactly k

ways. Thus for example E 1-tiles if and only if E tiles in the manner previously discussed
in this paper.

The pair (E,A) is said to be a k-tiling pair and this happens if and only if E ⋆A = k1
where here ⋆ stands for the discrete convolution and E,A now denote the characteristic
functions of the corresponding sets.

As before it is easy to see that this is equivalent to the conditions Ê(m)Â(m) = 0 for
m 6= 0 and |E||A| = kpd.

The reader is warned that the concept of k-tiling is pretty weak if k is not constrained.
In fact every subset E ⊆ Z

d
p |E|-tiles with the whole space as partner. Thus it is only

interesting that (E,A) k-tiles when 1 ≤ k < |E| or when the k-tiling partner is a proper
subset of Zd

p.
We now prove:

Theorem 6.6. A spectral set E ⊆ Z
d
p either 1-tiles or it |E|

p
-tiles with a hyperplane partner.

Proof. Let (E,B) be a spectral pair in Z
d
p. If |E| = 1 then E is a singleton set and hence

1-tiles so assume |E| = |B| > 1. Thus Ê(u) = 0 for some nonzero u of the form b− b′ with
b, b′ ∈ B distinct by Theorem 4.1. Letting H denote the hyperplane through the origin
perpendicular to u, we see that Ĥ is supported on the line through u on which Ê vanishes
away from the origin. Thus Ĥ(m)Ê(m) = 0 for all nonzero m. As |H||E| = |E|

p
pd we

conclude that (E,H) is a |E|
p
-tiling pair as claimed.
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This has the following interesting corollary:

Corollary 6.7. Let E ⊆ Z
d
p be a spectral set. Then either E is a tiling set or there exists

m = |E|
p

≤ pd−1 and a tiling set E′ ⊆ Z
d
p × Zm such that projection π : Zd

p × Zm → Z
d
p

takes E′ bijectively to E. Thus every spectral set is either a tiling set or is the bijective
projection of a tiling set.

Proof. By Theorem 6.6 either E tiles (in which case we are done) or it m = |E|
p
-tiles with

a hyperplane partner H.
In this second case recall that H can be taken to be the hyperplane through the origin

perpendicular to nonzero vector u with Ê(u) = 0. If H = H0,H1, . . . ,Hp−1 is a labelling

of the p parallel hyperplanes to H then E has exactly m = |E|
p

points in each Hj as
it equidistributes on this family. We can thus choose bijections θj : E ∩ Hj → Zm for
0 ≤ j ≤ p − 1. We can define f : E → Zm to be the unique function which restricts to
θj : E ∩Hj → Zm for 0 ≤ j ≤ p− 1.

Finally define E′ = {(e, f(e))|e ∈ E} ⊆ Z
d
p × Zm. Clearly the projection π takes E′

bijectively to E. View H as a subset of Zd
p × Zm via inclusion with zero last coordinate.

We claim that (E′,H) is a tiling pair in Z
d
p × Zm. Note |E′| = |E| so |E′||H| = |E|pd−1 =

mpd = |Zd
p × Zm| so the order condition for tiling is satisfied.

Given (~x, t) ∈ Z
d
p×Zm we first note that ~x lies in a unique Hj. As θj : E∩Hj → Zm is a

bijection there is a unique element ~e ∈ E such that ~e ∈ Hj and f(~e) = t. Since ~x,~e lie in the

same coset Hj of H, we have ~x−~e = ~h ∈ H. Thus (~x, t) = (~e, t)+ (~h, 0) = (~e, f(~e))+ (~h, 0)
is a sum of an element of E′ and H. This combined with the order condition shows that
(E′,H) is a tiling pair in Z

d
p × Zm as desired and the proof is complete.

7 Proof of Theorem 1.1

(a) is proved in the opening paragraph of Section 3.

(b) is proved in Corollary 4.2.

(c) is proved in Corollary 5.5.

(d) is proved in Proposition 6.2 and Proposition 6.1.

(e) is proved in Proposition 6.4.

(f) In Zp parts (a) and (b), and Corollary 4.2 imply that the only spectral or tiling sets
are singletons or Zp. We now turn our attention to Z

2
p. Part (a) implies that a tiling

set has size 1 or p or p2. Corollary 4.2 and Corollary 4.5 imply that the same is true
for spectral sets. Singletons and the whole of Z2

p are both tiling and spectral sets.

23



Part (e) implies that a set of size p is a tiling set if and only if it is a spectral set. In
all cases the set is also a graph set.

(g) Part (a) implies that a tiling set has size 1 or p or p2 or p3. Singletons and the
whole of Z3

p are spectral sets. By Part (e) a tiling set of size p or p2 is a spectral set.
Furthermore in all cases the set is also a graph set.

(h) is proved in Theorem 6.6.

(i) is proved in Corollary 6.7.

8 Construction and rank determination of a 2p × 2p log-

Hadamard matrix over Zp and proof of Theorem 1.2

When p is an odd prime, an example of a 2p × 2p Hadamard matrix whose entries were
pth roots of unity was constructed in [1]. In this section we analyze (a scaling) of the
corresponding log-Hadamard matrix with entries in Zp and show it has rank d with 4 ≤
d ≤ 5. This in turn implies that there exist spectral sets of size 2p (which hence cannot tile)
in Z

d
p when d ≥ 5. As this analysis also involves the check that this matrix is log-Hadamard

we do that also for completeness as our notation differs significantly from that found in [1].
First we provide the definition of the 2p × 2p matrix L with entries in Zp. Let p

be and odd prime, q = p−1
2 and n any nonsquare modulo p. Note q, n 6= 0 in Zp and

2q = −1 mod p. Furthermore note that in the partition Zp = {0} ∪ S ∪ N into zero, the
nonzero squares, and the non squares, multiplication by n induces a bijection between the
sets S and N . In the following we will exclusively use i for the index of rows of a matrix
and j’s for the index of columns of a matrix. We will also start our indexing of rows and
columns at zero so the zeroth row is the topmost row and the zeroth column the leftmost
column of the matrix. Thus the indexes i, j of our 2p × 2p matrix range from 0 to 2p − 1
though their mod p values range through 0 to p− 1 twice consecutively. We define

L =

[
A nA
B C

]

where Aij = 2ij − i2,Bij = (j − ni)2,Cij = n(i− j)2 are p× p matrices with entries in Zp

and i, j range from 0 to p− 1. We will refer to the first p rows of L as the “top rows” of L
and the last p rows as the “bottom rows”. Notice the topmost (0th) row of L is the zero
(row) vector which will imply the other rows are balanced vectors once we verify that L is
log-Hadamard.

Lemma 8.1. The matrix A is log-Hadamard. The difference of two distinct “top rows” of
L is a balanced vector in the span of the two vectors[
0, 1, 2, . . . , p− 1|0 · n, 1 · n, 2 · n, . . . , (p − 1) · n

]
and

[
1, . . . , 1|n, . . . , n

]
where we use a | to
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denote the midpoint of the 2p-dimensional vectors. In particular all the “top rows” of the
matrix L lie in the span of these two vectors.

Proof. We will use the notation
[
f(j)|g(j)

]
as shorthand for a 2p-dimensional vector whose

first p coordinates are given by the formula f(j) as the column index j varies over 0, . . . , p−1
and whose last p coordinates are given by the formula g(j) as the column index j varies
over 0, . . . , p− 1. Thus [j|j] encodes the vector [0, 1, 2, . . . , p− 1|0, 1, 2, . . . , p− 1] and [1|n]
the vector [1, 1, . . . , 1|n, n, . . . , n] for example.

Then the difference of “top row” i and “top row” i′ of the matrix L is [f(j)|nf(j)]
where f(j) = 2ij− i2− (2i′j− (i′)2) = 2(i− i′)j− (i2− (i′)2). This means that it is equal to
2(i− i′)[j|nj]− (i2 − (i′)2)[1|n] and so lies in the span of the two vectors [j|nj] and [1|n] as
claimed. Finally as (i− i′) is nonzero, (i− i′)[j|nj] has both halves balanced p-dimensional
vectors and adding any multiple of [1|n] to this does not change this. So the difference of
these two distinct top rows is balanced as claimed.

Finally as the topmost row of L is the zero vector, any other “top row” of L can be
viewed as the difference of itself and the topmost row and so lies in the span of the vectors
[1|n] and [j|nj].

Lemma 8.2. The difference of two distinct “bottom rows” of L is a balanced vector in the
span of the two vectors [j|j] and [n|1]. Thus the “bottom rows” lie in the span of the three
vectors [j|j], [n|1] and [j2|nj2].

Proof. The difference between the ith “bottom row” and the i′th “bottom row” is
[(j − ni)2 − (j − ni′)2|n(i − j)2 − n(i′ − j)2]. This simplifies to [n(i′ − i)j − n2((i′)2 −
i2)|n(i′ − i)j − n((i′)2 − i2)] = n(i′ − i)[j|j] − n((i′)2 − i2)[n|1]. Thus the difference of two
distinct “bottom rows” lies in the span of the two vectors [j|j] and [n|1]. Furthermore as
n(i′ − i) is nonzero, n(i′ − i)[j|j] is balanced (in each half) and adding any multiple of
[n|1] to this does not change this which establishes the first statement of the lemma. The
second statement follows as any “bottom row” can be written as the 0th “bottom row”
[j2|nj2] = [j2|nj2] plus the difference of itself and the 0th “bottom row” which is a linear
combination of [n|1] and [j|j].

Corollary 8.3. If d is the rank of L then 4 ≤ d ≤ 5. The rowspace of L lies in the span
of the 5 vectors [j|nj], [1|n], [j|j], [n|1] and [j2|nj2].

Proof. The last part follows immediately from Lemmas 8.1 and 8.2. From this it follows
that d ≤ 5. As n 6= 1, [j|j] and [j, nj] are linearly independent and as the span of these two
vectors consists of vectors whose leftmost coordinate is zero, we see that [1|n] is independent
from these two. Finally, to see that [j2|nj2] is independent from the set of three vectors
{[j|j], [j|nj], [1|n]}, note that in the first half of the any linear combination of these three
vectors is a linear function of j which cannot equal the quadratic function j2 as f(j) = j2

has image size p+1
2 as a function Zp → Zp whereas a linear function has image size p or 1.

Thus d ≥ 4 always.

25



Corollary 8.4. When p ≡ 3 mod 4 and we select n = −1, then the rank of L is four.

Proof. Note −1 is a valid choice for n if and only if −1 is not a square in Zp if and only
if p ≡ 3 mod 4. In this case [1|n] and [n|1] are scalar multiples of each other so the result
follows by Corollary 8.3.

To finish the check that L is log-Hadamard in light of lemmas 8.1 and 8.2 it remains
to show that the difference of a “top row” of L with a “bottom row” of L is a balanced
vector. This will require some preliminary considerations which we do next.

We first record a useful lemma about the image set of a quadratic map Q : Zp → Zp:

Lemma 8.5. Fix p and odd prime. Let Q(x) = ax2+ bx+ c : Zp → Zp be a quadratic map
with a 6= 0. Then for all µ ∈ Zp we have:

|Q−1(µ)| =





2 if b2 − 4a(c− µ) is a nonzero square

1 if b2 − 4a(c− µ) = 0

0 if b2 − 4a(c− µ) is a nonsquare

Proof. Follows immediately from the quadratic formula.

Definition 8.6. Fix p an odd prime. A pair of quadratic functions Q1, Q2 ∈ Zp[x] is a
balanced pair if for every µ ∈ Zp, |Q

−1
1 (µ)|+ |Q−1

2 (µ)| = 2. In this case the 2p-dimensional
vector (Q1(j)|Q2(j)) is a balanced vector.

By Lemma 8.5 it follows that if Q1(x) = ax2 + bx + c,Q2(x) = ãx2 + b̃x + c̃ are two
quadratic maps in Zp[x] with aã 6= 0 and b2−4ac = n[b̃2−4ãc̃], a = nã for some nonsquare
n then the pair (Q1, Q2) is a balanced pair of quadratic functions.

We are now ready to complete the verification that L is log-Hadamard.
If we take the difference between the ith “top row vector and i′ “bottom row” vector

of L (note i = i′ is possible) we get the row vector

[2ij − i2 − (j − ni′)2|n(2ij − i2)− n(i′ − j)2]

which simplifies to

[−j2 +(2ni′ +2i)j +(−i2 −n2(i′)2)| −nj2 +n(2i′ +2i)j +(−ni2 −n(i′)2)] = [Q1(j)|Q2(j)]

where Q1(j) = aj2 + bj + c,Q2(j) = ãj2 + b̃j + c̃ with a = −1, ã = −n, b = (2ni′ +
2i), b̃ = n(2i′ + 2i), c = (−i2 − n2(i′)2), c̃ = −n(i2 + (i′)2). It is then easy to verify that
b2−4ac = n(b̃2−4ãc̃), a = nã and so it follows that (Q1, Q2) is a balanced pair of quadratics
and so the difference vector is a balanced vector.

We have thus finished verifying that L is log-Hadamard and thus we have proven
Theorem 1.2:
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Theorem 8.7. For any odd prime p, there exists a spectral set of order 2p in Z
5
p which

does not tile. For primes p with p ≡ 3 mod 4, there exist spectral sets of order 2p in Z
4
p

which do not tile.

Proof. Follows by Corollaries 8.3 and 8.4 and Theorem 4.7.

As an illustration we provide the sets E and B for the case when p ≡ 3 mod 4 and
n = −1. Both are subsets of Z4

p. Label the elements of E by E = {e0, . . . , e2p−1} and the
elements of B by B = {b0, . . . , b2p−1}. Now letting i and j range from 0 to p− 1 we have

ei = (i2, 0, 2i, 0), ei+p = (−i2, 2i, 0, 1) and bj = (−1, j,−j, j2), bj+p = (1, j,−j,−j2),

with all the entries being elements of Zp.

9 3-dimensional Fuglede conjecture over prime fields

One of the important remaining questions is the status of the Fuglede conjecture in 3-
dimensions over prime fields. It has the following equivalent formulations:

Proposition 9.1 (Equivalent formulations of 3-dimensional Fuglede conjecture). Let p be
a prime. The following are equivalent:

(a) A subset of Z3
p tiles if and only if it is spectral.

(b) There do not exist spectral sets E ⊆ Z
3
p of size mp, 1 < m < p.

(c) There does not exist a mp×mp log-Hadamard matrix with entries in Zp of
rank ≤ 3 where 1 < m < p.
(d) There does not exist a mp×mp log-Hadamard matrix with entries in Zp of rank 3
where 1 < m < p.
(e) There does not exist a mp×mp special dephased log-Hadamard matrix with entries
in Zp of rank 3 where 1 < m < p.

Proof. By Theorem 1.1, a tiling set in Z
3
p is always spectral. Furthermore spectral sets of

size 1, p, p2, p3 in Z
3
p, always tile. Thus by the same theorem the only spectral sets that

do not tile would have sizes mp, 1 < m < p and any such set definitely does not tile by
order considerations. Thus (a) is equivalent to (b). (b) is equivalent to (c) by Theorem 4.7.
(c) is equivalent to (d) as there do not exist spectral sets of size mp, 1 < m < p in Z

2
p by

Theorem 1.1. The equivalence of (d) and (e) is given by Corollary 5.2.

We now provide a human-readable proof of the 3-dimensional Fuglede conjecture when
p = 2, 3.

Theorem 9.2. The Fuglede conjecture holds in Z
3
2 and Z

3
3.
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Proof. When p = 2, condition (b) of Proposition 9.1 holds and so we are done in this case.
Now consider p = 3. By Proposition 9.1 it is enough to rule out the existence of a

special dephased 6 × 6 log-Hadamard matrix with Z3 entries of rank 3. We will use our
previous computation of the Davey monoid of 3× 3 Davey matrices and the corresponding
triplet rule to show that up to permutation of rows and columns there is a unique special
dephased 6× 6 log-Hadamard matrix with Z3 entries. This matrix will have rank 4 and so
it will follow that no rank 3, special dephased 6× 6 log-Hadamard matrix with Z3 entries
exists hence proving the Fuglede conjecture in Z

3
3.

Let A be a special dephased log-Hadamard 6× 6 matrix with Z3 entries. Thus

A =




0 0 0 0 0 0
0 1 2 0 1 2
0 2 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
0 2 ∗ ∗ ∗ ∗




We will refer to the rows as 0th through 5th row (0th row on top) and columns 0th through
5th (0th on the left) throughout.

Now the 1st row and the 3rd row are two balanced 6-dimensional vectors whose differ-
ence is balanced so the triplet rule says that as a 0 occurs in the 3rd row below a 1 in the
1st row, we must also have a 1 occur in the 3rd row below a 0 in the 1st row and a 2 occur
in the 3rd row below a 2 in 1st row. Thus A3,3 = 1 and one of A3,2, A3,5 equals two. By
permuting the 2nd and 5th columns if necessary we can assume A3,2 = 2. (We will not be
permuting columns anymore after this.)

Thus the 3rd row looks like (0, 0, 2, 1, ∗, ∗). As there is a 0 in the 3rd row below a 0
in the 1st row, the triplet rule forces that there must be a 2 in the 3rd row below a 1 in
the 1st row and a 1 in the 3rd row below a 2 in the 1st row. This forces the 3rd row to be
(0, 0, 2, 1, 2, 1). Thus

A =




0 0 0 0 0 0
0 1 2 0 1 2
0 2 ∗ ∗ ∗ ∗
0 0 2 1 2 1
0 1 ∗ ∗ ∗ ∗
0 2 ∗ ∗ ∗ ∗




Now by considering the 1st and 2nd column which are balanced, with balanced differ-
ence, we see that there is exactly one occurrence of a zero to the left of a zero. Thus the
triplet rule guarantees the occurrence of exactly one 1 to the right of a 2. By permuting
the 2nd and 5th rows if necessary (We will not be permuting rows anymore after this.) we
can assume A2,2 = 1. Then the occurrence of a 2 in the 2nd column to the right of a 0 in
the 1st column forces the occurrence of a 0 to the right of a 2 and a 1 to the right of a 1.
This forces the form of the 2nd column to be as below:
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A =




0 0 0 0 0 0
0 1 2 0 1 2
0 2 1 ∗ ∗ ∗
0 0 2 1 2 1
0 1 1 ∗ ∗ ∗
0 2 0 ∗ ∗ ∗




Now when comparing the 4th and 5th rows with the 1st row, three pairs of entries
are known and the triplet rule forces the remaining unknown entries (no permutations or
ambiguity) as the reader can verify resulting in the matrix:

A =




0 0 0 0 0 0
0 1 2 0 1 2
0 2 1 ∗ ∗ ∗
0 0 2 1 2 1
0 1 1 2 2 0
0 2 0 2 1 1




The remaining entries of A are then forced as the last 3 columns must be balanced and
we get:

A =




0 0 0 0 0 0
0 1 2 0 1 2
0 2 1 1 0 2
0 0 2 1 2 1
0 1 1 2 2 0
0 2 0 2 1 1




A quick Gauss-Jordan elimination reveals this matrix to have rank 4 and thus any
special dephased 6× 6 log-hadamard matrix with entries in Z3 has rank 4 (not 3) and we
are done.

Though counterexamples to the Fuglede conjecture exist in 3-dimensions over some non
prime cyclic rings, these are of the form tiling sets which are not spectral. As we know tiling
sets are always spectral in Z

3
p when p is prime and so these examples cannot help decide

whether the Fuglede conjecture is true or not in 3-dimensons over prime fields. We have
seen that generally Fuglede is true in 2 dimensions and false in 4 dimensions over prime
cyclic rings so 3-dimensions remains the last remaining significant case of this conjecture
over prime rings.

Unfortunately the Davey monoid methods and computer methods seem to become
computationally infeasible as the prime p grows. In Z

3
5 for example one has to rule out the

existence of spectral sets of size 10, 15, 20 in order to prove the conjecture. The number
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of subsets of these sizes are
(125
10

)
+

(125
15

)
+

(125
20

)
which is large and furthermore many

spectral partners must be considered even after some simplications. The set of 5×5 Davey
matrices seems also hard to determine as 5! = 120 permutations must be considered in
order to understand it.

Another question left open is the question of whether tiling sets are always spectral
over prime cyclic rings in any dimension. Surprisingly this appears to remain a possibility
though many counterexamples exist over non prime cyclic rings.

References

[1] A. T. Butson Generalized Hadamard Matrices, Proc. Amer. Math. Soc., 13 (6) (1962),
894-898.

[2] B. Fuglede, Commuting self-adjoint partial differential operators and a group theoretic
problem, J. Funct. Anal. 16 (1974), 101-121.
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